SMQ-ILC Weights 2022:1

2024-02-10

To participants

Report on an interlaboratory comparison (ILC weights 2022:1)

The bag carrying the weight set for calibration.

Author

Håkan Källgren Swedish Metrology and Quality AB

Calculations

Peter Lau MNE-Konsult AB

Content

Report on an interlaboratory comparison (ILC weights 2	022:1)	1
Abstract		4
Purpose and implementation of the comparison		5
Advisory group		5
Information about the intercomparison		5
Participating laboratories and measuring scheme for the	ne comparison	5
Principles concerning the calibration in general		6
Conditions and transport during the measurement peri	od	6
Weights for calibration		7
Reference calibration certificates:		7
Calibration instructions		7
Planning and administrative details		7
Administrative information		7
Analysis of the calibration results		8
Inter-comparison reference value and its uncertainty		8
The principle of the intercomparison		9
Measuring results on calibration in the ILC		9
Result of the mg wire weights.		10
Table 1: Calibration results for mass piece 1 mg	Diagram 1	10
Table 2: Calibration results for mass piece 2 mg	Diagram 2	10
Table 3: Calibration results for mass piece 5 mg	Diagram 3	11
Table 4: Calibration results for mass piece 10 mg	Diagram 4	11
Table 5: Calibration results for mass piece 20 mg	Diagram 5	11
Table 6: Calibration results for mass piece 50 mg	Diagram 6	12
Table 7: Calibration results for mass piece 100 mg	Diagram 7	12
Table 8: Calibration results for mass piece 200 mg	Diagram 8	12
Table 9: Calibration results for mass piece 500 mg	Diagram 9	13
Result of the g-weights		13
Table 10: Calibration results for mass piece 1 g	Diagram 10	13
Table 11: Calibration results for mass piece 2 g	Diagram 11	13
Table 12: Calibration results for mass piece 5 g	Diagram 12	14
Table 13: Calibration results for mass piece 10 g	Diagram 13	14
Table 14: Calibration results for mass piece 20 g	Diagram 14	14

Table 15: Calibration results for mass piece 50 g	Diagram 15	15
Table 16: Calibration results for mass piece 100 g	Diagram 16	15
Table 17: Calibration results for mass piece 200 g	Diagram 17	15
Table 18: Calibration results for mass piece 500 g	Diagram 18	16
Result of the kg-weights		16
Table 19: Calibration results for mass piece 1 kg	Diagram 19	16
Table 20: Calibration results for mass piece 2kg	Diagram 20	16
Comments on the calibration certificates		17
Additions and changes to the DRAFT report		17
Final conclusions		17
Acknowledgement		17
Annex 1 ILC weights 2022:1		17
Annex 2 Description of the intercomparison/ILC		17
Appendix 1 Reporting form		
References:		19

Abstract

This report presents the outcome of an inter-comparison on weights with 7 participating laboratories.

Prior to the circulation of the weights among the participant laboratories most of them were calibrated by RISE (Swedish National Metrological Institute) and a minority by METTLER TOLEDO (accredited laboratory).

RISE performed all calibrations after the circulation. Their average from both calibrations serve as assigned intercomparison reference values. Together with the combined reference uncertainty they are used to calculate En-values at each measuring point and for each participant.

This report covers all together 94 calibrations of weights made by 7 laboratories in 6 countries. Their calibration certificates were mostly in their local language but sometimes in English.

Many uncertainty claims are comparable between participants.

The summarized results from 94 number of calibrations has 0 results got En values above 1.

The result of this intercomparison in general is extremely good compared to intercomparisons in other fields. This is probably related to long historic cooperation in the mass field in Europe and development of mass comparator that are used for calibrations.

The stability of the weights was followed during the circulation as seen below for the 1 g weight.

The red lines are the limits of uncertainty by the reference laboratory and the blue squares the results from the different laboratories.

The dotted line is trying to find if there is a trend of the mass values.

All weights had in principle the same stability.

Purpose and implementation of the comparison

This interlaboratory comparison serves as a tool to verify results reported by calibration laboratories.

It is an effective method to demonstrate technical capacity of the participant and serves as a technical base for accreditation as required by ISO/IEC 17025:2017 (SS-EN ISO/IEC 17025:2018) as specified in point 7.7.2.

Advisory group

The intercomparison has followed the recommendations of the advisory group. The advisory group has defined the set-up of weights that should be included in the ILC weights 2022:1.

The advisory group consist of Peter Lau MNE Konsult and Håkan Källgren Swedish Metrology and Quality.

Information about the intercomparison

The information about the intercomparison was given in 3 different media:

- Linkedin
- The data base <u>https://www.eptis.org</u>
- On the web <u>https://smquality.se/interlaboratory-comparisons-ilc</u>

The information on the web was done in 2 steps. General information as ILC weights 2022:1 published on smquality.se and enclosed to this report in annex 1.

Detailed information as a description of the intercomparison/ILC is published on smquality.se and enclosed to this report the reporting forms as annex 2.

Participating laboratories and measuring scheme for the comparison

Laboratory
RISE (NMI) and METTLER TOLEDO (accredited)
Oy G.W. Berg & Co Ab
Lahti Precision Oy
IKM laboratorium AS
Kalibrierstelle Baselland
METRON SERV SRL
ZWIEBEL SAS
UAB "Milgeda"
RISE, reference laboratory Sweden

The circulation started in week 11 and ended in week 40 2023.

The participants are accredited by NA, Cofrac, FINAS, DAkkS, RENAR and LIETUVOS NACIONALINIS AKREDITACIJOS BIURAS.

The reference laboratory RISE, Sweden has the status as a National Metrology Institute, NMI and did the main part of the reference calibrations. Some weights were newly purchased from Mettler Toledo that made the initial calibration as an accredited laboratory.

Principles concerning the calibration in general.

The reference laboratory and one accredited laboratory calibrated all weights at the beginning and after finishing the circulation.

During the whole exercise the preliminary reported results were used for checking possible drift behaviour of the weights. The purpose was to maintain equal conditions for all participants over the total measurement period. In doubt the weights were planned to be called back for a new reference calibration, which however was not necessary.

Conditions and transport during the measurement period

A special case having special filters and insulation for humidity and vibrations was used for transport.

Weights for calibration

Weight	Density, value or possible range	Weight	Density, value or possible range	Weight	Density, value or possi- ble range
mg	kg/m ³	g	kg/m ³	kg	kg/m ³
1	>3000	1	530016000	1	78108210
2	>3000	2	600012000	2	78108210
5	>3000	5	6900—9600		
10	>3000	10	7270—8890		
20	>3000	20	75008570		
50	>3000	50	8009,4		
100	>3000	100	78108210		
200	>3000	200	78108210		
500	>4400	500	7 989,0		

The participants were asked to calibrate at the following weights having the density values.

Reference calibration certificates:

Before the circulation from RISE 105102-1151714-K01, 105102-2F003564-K06, MYmPX11043-K01

Before circulation from Mettler-Toledo C239866459--65

After circulation from RISE 105102-1217064-K01

Calibration instructions

The laboratories were allowed maximum 10 days for their calibration. In the call they were advised to use their own calibration and reporting procedures.

The result should be presented as the conventional mass value as defined by OIML Document D 28 The laboratories should not express a classification according to the rules in OIML Recommendation 111.

Planning and administrative details

Administrative information

Address to send the required documents:

Swedish Metrology and Quality AB Håkan Källgren Dragspelsgatan 21 SE-504 72 Borås, Sweden e-mail: <u>hakan.kallgren@smquality.se</u> <u>Phone: +46 705 774 931</u> Summary of the timeline planning in the call:

- The preliminary results (excel-protocol) should be sent to the organiser when the parcel was sent to next participant.
- One week after the calibration/measurement the calibration certificate should be sent to the evaluator of the intercomparison.
- A draft report should be dispatched to the participants 2 weeks after receiving the last calibration certificate. The organiser was not able to deliver according to this rule and will allow more time in upcoming intercomparisons.
- Comments or feed-back on the draft report to the organiser were expected within 1 week.
- Final report should be finalized within 2 weeks after receiving all comments or feed-back from the participants.

Analysis of the calibration results

The evaluator used the principles of the ISO/IEC 17043:2010 in the reporting.

As an easy-to-understand measure to judge each participant result its distance to the assigned reference value is used, normalized with respect to the uncertainty in this difference. This measure the En-value is calculated for every calibrated weight according to equation 1).

$$En_{i,j} = \frac{x_{i,j} - x_{ref,j}}{\sqrt{U_{i,j}^2 + U_{ref,j}^2}}$$
(eq. 1)

- $x_{i,j}$: Single measurement result (deviation from nominal mass value); index *i* and *j* count the various participants and weights respectively.
- xref.j: Assigned inter-comparison reference value for weight j.
- $U_{i,j}$: The estimated expanded uncertainty (k=2) stated by each laboratory *i* for respective weight *j*.

 $U_{ref,j}$: The estimated expanded uncertainty (k=2) of the assigned reference value for the same weight j.

 $En_{i,j}$: The calculated En-value for each participant i and each weight j.

Inter-comparison reference value and its uncertainty

The reference values $x_{ref,j}$ are calculated as the average from the first and last calibration provided by the reference laboratory or the accredited laboratory and the reference laboratory.

$$x_{ref,j} = \frac{R_{1,j} + R_{2,j}}{2}$$
 (eq. 2)

For each instrument

$x_{ref,j}$:	The calculated inter-comparison reference value for weight <i>j</i> .
<i>j</i> :	Counting the different weights.
$R_{1,j}$ & $R_{2,j}$:	The assigned comparison reference values provided by the reference laboratory at start and end.
	In the result tables and the diagrams only the symbol REF is used is used for identifying the assigned
	reference result.

For some weights the reported uncertainties differed slightly between the calibration at the beginning and the end. Thus, the measurement uncertainty for weight was calculated as the uncertainty of their mean (equation 3).

$$U(x_{ref,j}) = 2\sqrt{\left(\frac{U(R_{1,j})}{2\cdot 2}\right)^2 + \left(\frac{U(R_{2,j})}{2\cdot 2}\right)^2} + \frac{1}{2}\left|R_{2,j} - R_{1,j}\right| \quad (eq. 3)$$

$U(x_{refj})$:	The combined expanded uncertainty – average from two calibrations.
$U(R_{1,j})$:	The expanded uncertainty (k=2) for weight j stated in the first calibration
	The second state $(1, 2)$ for second state $(1, 2)$ for second state $(1, 2)$ for second state $(1, 2)$

 $U(R_{2,j})$: The expanded uncertainty (k=2) for weight j stated in the final calibration

The first number 2 in the denominator comes from transformation from k=2 to standard uncertainty k=1. The second number 2 in the denominator is due to the average (number 2 in the denominator in equation 2). The number 2 in front of equation 3 then transforms this back to k=2. The exponent 2 is due to the quadratic combination law of uncertainty contributions.

Finally, if there is a change in the mass of a weight between first and final calibration half of this difference is added to the combined uncertainty to catch this possible drift. However, the differences found are far below the stated calibration uncertainties (factor 0,05 to 0,5 at maximum) and thus do not really contribute to the uncertainty of the reference values.

The principle of the intercomparison

An absolute value of E_n of less than |1| is often used as a criterion for an acceptable measurement quality, according to ISO/IEC 17043:2010, B.4.1.1. It means a reported deviation x_i from the nominal mass value by a participant does not deviate more from the assigned reference comparison value x_{ref} than what can be expected from the calculated uncertainty in this difference.

$$E_n < 1: |x_i - x_{ref}| < \sqrt{U_i^2 + U_{ref}^2}$$
 (eq. 4)

However, to make this measure a reliable one for an inter-comparison the reference U_{ref} must be small enough not to contribute significantly to the right side of equation 4. Due to the quadratic combination ideally U_{ref} should be in the range of 1/3 of U_i . This is not always easy to achieve, which means that relatively high En-values although between -1 and +1 must be regarded not totally reliable if U_{ref} and U_i are of the same size or if $U_{ref} > U_i$.

Measuring results on calibration in the ILC

The following tables present the found mass deviations from the weights nominal value along with the stated measurement uncertainty for each weight.

Besides these "deviations" and "uncertainty" also the reported "determined mass values" are listed in the following tables. This presentation is chosen to allow the participants to compare the tabled data in this report with their own documentation. The unit chosen is μ g for the mg- and g-weight pieces. This contrasts with the used reporting protocol in excel, but it makes the numbers easier to compare. For the two large weights in the kg-region mg was used as unit for comparison.

It was the ambition of the organizer to directly incorporate the excel-protocols from participants into the evaluation calculations for reporting the outcome of the comparison measurements after first having checked all data against those in the calibration certificates delivered in a separate calibration certificate. This worked very well.

The following tables are built with increasing participant identity numbers and list at the bottom the belonging reference value based on the average of two calibrations denoted as REF.

Together with the estimated uncertainty $U_{ref,j}$ these two values are used for calculating each participants E_n -value displayed in the last column.

The participant identity P1 to P7 is chosen in random and not timely order and it is kept he same in all tables and diagrams. Empty lines in the table simply mean that this participant did not provide a calibration result for this weight. The results are presented in three parts, first for the mg-weights then for the g-weights and the two kg-weights.

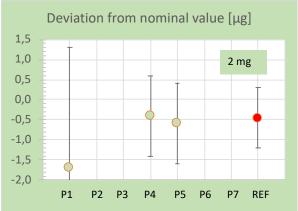
Result of the mg wire weights.

Table 1: Calibration results for mass piece 1 mg

Partici- pant	Measured mass value	Deviation from nominal value	Stated uncertainty	En- value
	[mg]	[µg]	[µg]	
P1	1,0054	5,4	3	0,46
P2				
P3	1,0010	1,0	50	-0,06
P4	1,0029	2,9	1	-0,80
P5	1,0039	3,9	1	-0,04
P6	1,0039	3,9	2	-0,02
P7				
REF	1,00395	3,95	0,86	

Table 2: Calibration results for mass piece 2 mg

Partici- pant	Measured mass value	Deviation from nominal value	Stated uncertainty	En- value
	[mg]	[µg]	[µg]	
P1	1,9983	-1,7	3	-0,40
P2				
P3				
P4	1,9996	-0,4	1	0,04
P5	1,9994	-0,6	1	-0,12
P6				
P7				
REF	1,99955	-0,45	0,76	


Ρ1

P2 P3

Diagram 1

7,0 6,0

5,0 4,0 3,0 2,0 1,0 0,0

Deviation from nominal value [µg]

Ρ4

P5 P6

1 mg

P7 REF

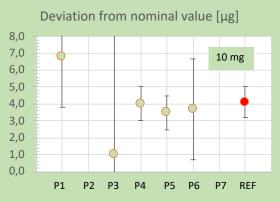
Ρ7 REF

Diagram 3

Partici- pant	Measured mass value	Deviation from nominal value	Stated uncertainty	En- value	1,0	Devia	tion	from	nom	ninal	valu	e [µ	g]
	[mg]	[µg]	[µg]						_	T	5 m	na l	
P1	4,9990	-1,0	3	-0,19	0,5						511	ıв	T
P2					0,0								
P3					-0,5			_		1			-
P4	4,9996	-0,4	1	0,00	-1,0								
P5	4,9998	-0,2	1	0,16	-1,5				1	Ţ			1
P6													
P7					-2,0	P1	P2	P3	P4	Р5	P6	P7	RE
REF	4,9996	-0,4	0,81			11	Ρ2	-2	г4	-2	F0	F7	R

Table 3: Calibration results for mass piece 5 mg

Comment: The reference value is marked in red the diagrams. One can observe a very good consensus between the results of the participant and the reference values, which leads to low En-values. Several participants only calibrated a selection of the mg-weights. Participant P7 did not provide any result for the mg-weights but is shown as well in the tables to make it easier for all participants to check their presented data coupled to their laboratory identity.


Table 4: Calibration results for mass piece 10 mg

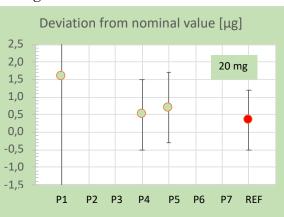

Partici-	Measured	Deviation from	Stated	En-
pant	mass value	nominal value	uncertainty	value
	[mg]	[µg]	[µg]	
P1	10,0068	6,8	3	0,86
P2				
P3	10,0010	1,0	50	-0,06
P4	10,0040	4,0	1	-0,07
P5	10,0035	3,5	1	-0,44
P6	10,0037	3,7	3	-0,13
P7				
REF	10,0041	4,1	0,91	

Table 5: Calibration results for mass piece 20 mg

Partici- pant	Measured mass value	Deviation from nominal value	Stated uncertainty	En- value
	[mg]	[µg]	[µg]	
P1	20,0016	1,6	4	0,31
P2				
P3				
P4	20,0005	0,5	1	0,11
P5	20,0007	0,7	1	0,27
P6				
P7				
REF	20,0004	0,35	0,86	

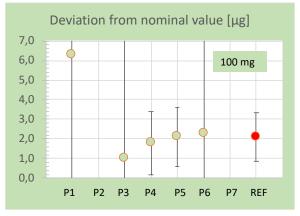
11(19)

Diagram 6

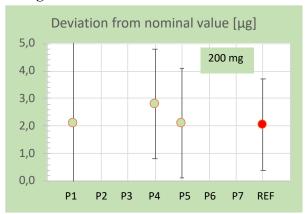
Partici- pant	Measured mass value	Deviation from nominal value	Stated uncertainty	En- value	Deviation from nominal value [µg]
	[mg]	[µg]	[µg]		4,5
P1	50,0031	2,2	5	-0,16	4,0
P2					3,5
Р3					3,0
P4	50,0029	2,9	1,3	-0,06	2,5
P5	50,0031	3,1	1,3	0,06	2,0
P6					1,5 50 mg
P7					1,0
REF	50,0030	3,0	1,1		P1 P2 P3 P4 P5 P6 P7 REF

Table 6: Calibration results for mass piece 50 mg

Comment: For P1 (50 mg) a different result was reported in the calibration certificate compared to the excel-protocol.


Table 7: Calibration results for mass piece 100 mg

Partici- pant	Measured mass value	Deviation from nominal value	Stated uncertainty	En- value
	[mg]	[µg]	[µg]	
P1	100,0063	6,3	7	0,59
P2				
P3	100,0010	1,0	50	-0,02
P4	100,0018	1,8	1,6	-0,15
P5	100,0021	2,1	1,5	0,00
P6	100,0023	2,3	5	0,04
P7				
REF	100,0021	2,1	1,23	


Table 8: Calibration results for mass piece 200 mg

Partici-	Measured	Deviation from	Stated	En-
pant	mass value	nominal value	uncertainty	value
	[mg]	[µg]	[µg]	
P1	200,0021	2,1	9	0,01
P2				
P3				
P4	200,0028	2,8	2	0,29
P5	200,0021	2,1	2	0,02
P6				
P7				
REF	200,0021	2,05	1,7	

500 mg

REF

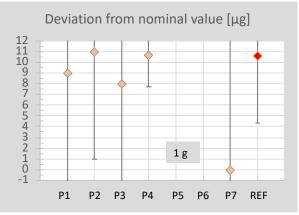
Diagram 9

Partici- pant	Measured mass value	Deviation from nominal value	Stated uncertainty	En- value		Devia	tion f	from	nom	inal	valu	e [µg	5]
	[mg]	[µg]	[μg]		20,0 -						T		
P1	500,0091	9,1	12	0,03	15,0	-	-					500	m
P2	500,0083	8,0	8	-0,09		-			-				
P3	500,0020	2,0	57	-0,12	10,0				-				
P4	500,0096	9,6	2,5	0,23			9		1	Ĭ			
P5	500,0089	8,9	2,5	0,04	5,0	-							
P6	500,0113	11,0	8	0,27	0.0	_		0			-		
P7					0,0 -	P1	P2	Р3	P4	P5	P6	P7	P
REF	500,0088	8,75	2,62			ΓI	F2	F 3	r4	rJ	PO	F7	n

Table 9: Calibration results for mass piece 500 mg

Comment: In total the participating laboratories executed 36 calibrations on the 8 mg-weights, all with acceptable result. The maximum En-value of 0,86 is a valid one as the relation between the participants U_{i,j} and U_{ref,j} has the necessary relation of 3:1 (see equation 1).

Result of the g-weights


Table 10: Calibration results for mass piece 1 g

Partici- pant	Measured weight	Deviation from nominal value	Stated uncertainty	En- value
	[g]	[µg]	[µg]	
P1	1,000009	9	20	-0,07
P2	1,000011	11	10	0,04
P3	1,000008	8	51	-0,05
P4	1,0000107	10,7	3	0,02
P5				
P6				
P7	1,000000	0	260	-0,04
REF	1,0000106	10,6	6,2	

Table 11: Calibration results for mass piece 2 g

Partici- pant	Measured weight	Deviation from Stated nominal value uncertainty		En- value
	[g]	[µg]	[µg]	
P1	2,000017	17,4	20	-0,22
P2	2,000020	20,0	13	-0,14
P3	2,000021	21,0	50	-0,02
P4	2,000021	20,7	4	-0,17
P5				
P6	2,000021	21,0	13	-0,08
P7	2,000020	20,0	260	-0,01
REF	2,0000222	22,15	7,6	

Diagram 11

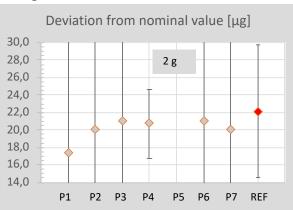
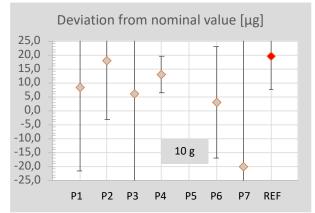


Diagram 12

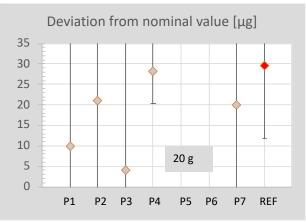
		<i>i i i i i i i i i i</i>	Proce	- 0	
Partici- pant	Measured weight	Deviation from nominal value	Stated uncertainty	En- value	Deviation from nominal value [µg]
	[g]	[µg]	[µg]		
P1	5,0000084	8,4	30	-0,44	26,0
P2	5,0000282	28	16	0,27	16,0
P3	5,000018	18	51	-0,09	5 g
P4	5,0000195	19,5	5	-0,25	6,0 5 g
P5					-4,0
P6					
P7	4,99999	-10	270	-0,12	-14,0 P1 P2 P3 P4 P5 P6 P7 REF
REF	5,0000227	22,7	11,3		F1 F2 F3 F4 F3 F0 F7 REF

Table 12: Calibration results for mass piece 5 g

Comment: For the g-weights a larger spread in uncertainty claims between the participants can be observed (factor >50 between highest and lowest uncertainty). Participant P4 has always lower uncertainty than that of the reference value. This does however, in no way reduce the credibility of the very acceptable En-values.


Table 13: Calibration results for mass piece 10 g

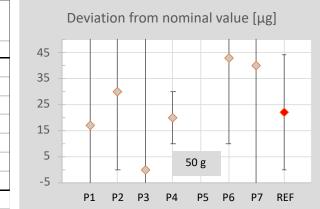
Partici- pant	Measured	Deviation from	Stated	Γ.,
pant			Jtateu	En-
1	weight	nominal value	uncertainty	value
	[g]	[µg]	[µg]	
P1 1	0,0000085	8,5	30	-0,34
P2 2	10,000018	18	21	-0,06
P3 :	10,000006	6,0	54	-0,24
P4 1	0,0000131	13,1	7	-0,48
P5				
P6 3	10,000003	3	20	-0,71
P7	9,999980	-20	270	-0,15
REF 1	0,0000195	19,5	12	


Table 14: Calibration results for mass piece 20 g

Partici- pant	Measured weight	Deviation from nominal value	Stated uncertainty	En- value
	[g]	[µg]	[µg]	
P1	20,00001	10	40	-0,45
P2	20,000021	21	26	-0,27
P3	20,000004	4	68	-0,36
P4	20,0000283	28,3	8	-0,06
P5				
P6				
P7	20,00002	20	280	-0,03
REF	20,0000295	29,5	18	

Diagram 13

Diagram 14

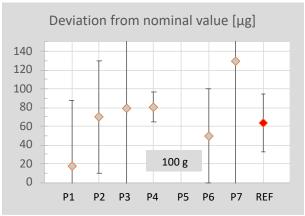


14(19)

	(g)			
Partici- pant	Measured weight	Deviation from nominal value	Stated uncertainty	En- value
	g	[µg]	[µg]	
P1	50,000017	17	40	-0,11
P2	50,00003	30	30	0,21
P3	50,00000	0	96	-0,22
P4	50,00002	20	10	-0,08
P5				
P6	50,000043	43	33	0,53
P7	50,00004	40	310	0,06
REF	50,000022	22	22	

Table 15: Calibration results for mass piece 50 g

Diagram 15



From 50g calibration results non has an En-value close to +1 or -1. Maximum En-value is 0,76, which means all participants perform an equivalent calibration although with varying measurement uncertainty.

Table 16: Calibration results for mass piece 100 g

		=	=	
Partici- pant	Measured weight	Deviation from nominal value	Stated uncertainty	En- value
	g	[µg]	[µg]	
P1	100,000018	18	70	-0,60
P2	100,00007	70	60	0,10
P3	100,00008	80	220	0,07
P4	100,000081	81	16	0,51
P5				
P6	100,00005	50	50	-0,23
P7	100,00013	130	360	0,18
REF	100,000064	63,5	31	

Diagram 16

Table 17: Calibration results for mass piece 200 g

		5	1	0
Partici-	Measured	Deviation from	Stated	En-
pant	weight	nominal value	uncertainty	value
	g	[µg]	[µg]	
P1	199,999998	-2	140	-0,76
P2	200,0001	100	110	-0,11
P3	200,00007	70	350	-0,12
P4	200,000116	116	30	0,03
P5				
P6	200,00008	80	100	-0,29
P7	199,9999	-100	1000	-0,21
REF	200,000114	114	60	

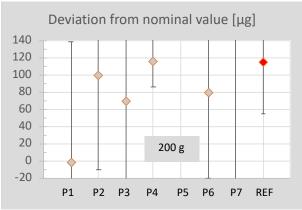
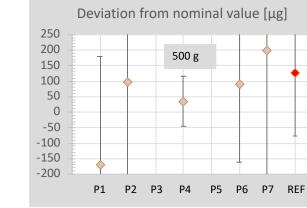
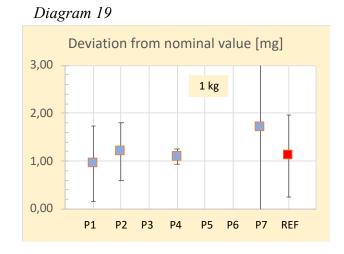



Diagram 18

Partici- pant	Measured weight	Deviation from nominal value	Stated uncertainty	En- value	Deviati 250 —
	g	[µg]	[µg]		200
P1	499,99983	-170	350	-0,73	150
P2	500,0001	100	400	-0,06	100
P3					50
P4	500,000036	36	80	-0,41	-50
P5					-100
P6	500,00009	90	250	-0,11	-150
P7	500,0002	200	1600	0,05	-200 F
REF	500,000125	125	202		· · ·

Table 18: Calibration results for mass piece 500 g

Result of the kg-weights


For the presentation of these two weights the unit g was chosen together with the uncertainty in mg

		v	-	0
Partici- pant	Measured weight	Deviation from nominal value	Stated uncertainty	En- value
pane	0		,	Varue
	[g]	[mg]	[mg]	
P1	1000,00095	0,95	0,79	-0,14
P2	1000,00119	1,2	0,60	0,08
P3				
P4	1000,0011	1,1	0,16	-0,02
P5				
P6				
P7	1000,0017	1,7	2,6	0,21
REF	1,0000011	1,1	0,85	

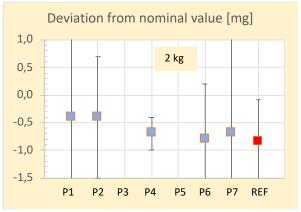

Table 19: Calibration results for mass piece 1 kg

Table 20: Calibration results for mass piece 2kg

Partici- pant	Measured weight	Deviation from nominal value	Stated uncertainty	En- value	
	[g]	[mg]	[mg]		
P1	1999,9996	-0,4	2,0	0,21	
P2	1999,99959	-0,4	1,1	0,34	
P3					
P4	1999,9993	-0,7	0,3	0,18	
P5					
P6	1999,9992	-0,8	1,0	0,04	
P7	1999,9993	-0,7	4,6	0,03	
REF	1,999999915	-0,85	0,76		

Diagram 20

Comment: In these 9 results no En-value was above 0,34, which again means a very convincing consensus. It should be noted that three of the results for 1 kg are given with a lower uncertainty than that of the reference laboratory, which however does not question the high confidence in the calculated En-values. The reason for the reference situation is due to a primary calibration of the 1 kg-weight in a false (lower) quality class.

Comments on the calibration certificates

-- not a part of the intercomparison

Most of the laboratories report measurement error, but others the mass value.

Most of the laboratories specified their uncertainty with 2 digits in the certificate, but some laboratories gave 1 or 3 significant digits and that is not following the rules about presentation of uncertainty values.

All laboratories have an accreditation by their national accreditation body.

Additions and changes to the DRAFT report

There are some redactional changes in tables 15 -18.

Final conclusions

In this inter comparison most of the participants could demonstrate a capacity to calibrate and give relevant values in relationship to their uncertainties.

Many uncertainty claims are comparable between participants.

Participant P4 has mostly lower uncertainty than that of the reference value. This does however, in no way reduce the credibility of the very acceptable En-values. The participant has calibrated to better uncertainty values than was announced in the description of the intercomparison.

It should be noted that three of the results for 1 kg are given with a lower uncertainty than that of the reference laboratory, which however does not question the high confidence in the calculated En-values. The reason for the reference situation is due to a primary calibration of the 1 kg-weight in a false (lower) quality class.

The summarized results from 94 number of calibrations have 0 results got En values above 1.

<u>Acknowledgement</u>

Thanks to Peter Lau, the main implementor of the calculations.

We also acknowledge the primary calibrations by RISE Sweden that supported the ILC with reference calibrations.

Annex 1 ILC weights 2022:1 *Published on* <u>https://smquality.se/</u>

Annex 2 *D*escription of the intercomparison/ILC *Published on* <u>https://smquality.se/</u>

Appendix 1 Reporting form

ILC- Weight 2	022:1		Calibration of weights							
		Code for op	pening the transportation box	c:	504					
Documentation of calibration results			Compariso		ID					
Laboratory	:									
Person:										
e-mail:										
Date:										
Date.										
mg-wire weig	ts					Used in	n comparison		From	certificate
ing with weig										
Nominal mass	Calibrated con- ventional mass value	Stated error in mass	Measurement uncertain- ty in mass determination			Stated error	Measurement uncertainty		ated rror	Measurement
[mg]	[mg]	[mg]	[mg]			[mg]	[mg]	1	mg]	[mg]
1		1 01	1 07			[8]	[8]			[8]
2										
5										
10										
20										
50										
100 200				_			-			
500								~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
500		3					2			
g-weights										
Nominal	Calibrated con-	Stated error	Measurement uncertain-			Stated	Measurement	St	ated	Measurement
mass	ventional mass value	in mass	ty in mass determination			error	uncertainty	e	rror	uncertainty
[g]	[g]	[mg]	[mg]			[mg]	[mg]	1	mg]	[mg]
1										1
2										
5										
10										
20 50	-									
100										
200										
500										
kg-weights										
Nominal	Calibrated con-	Stated error	Measurement uncertain-	-		Stated	Measurement	S+	ated	Measurement
mass	ventional mass value	in mass	ty in mass determination			error	uncertainty		rror	uncertainty
[kg]	[kg]	[mg]	[mg]			[mg]	[mg]		mg]	[mg]
1	1.121	1.1.12	ניייא			[8]	101			191
2										

References:

- ISO/IEC 17043:2010 Conformity assessment General requirements for proficiency testing
- ISO/IEC 17025:2017 General requirements for the competence of testing and calibration laboratories
- ISO 13528 Statistical methods for use in proficiency testing by interlaboratory comparison.
- Evaluation of measurement data Guide to the expression of uncertainty in measurement, GUM (JCGM 100:2008)
- EA-4/02 M:2022 Evaluation of Uncertainty of Measurement in Calibration
- International Vocabulary of Metrology Basic and General Concepts and Associated Terms (VIM)